
 

 

 

 

 

 

 

 

 

Page 1 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Lab no 07:  Single-Cycle MIPS Processor 

 

The purpose of this Lab is to: 

1) Understand the difference between architecture and 

microarchitecture. 

2) Understand the Single-Cycle MIPS Processor. 

3) Understand the HDL code for the Single-Cycle Processor. 

4) Connect sub-modules of the Single-Cycle MIPS Processor 

on a top-level module. 

5) Convert the MIPS assembly of a simple program to 

machine language. 

6) Write a testbench that loads the program into the instruction 

memory to test the processor. 

  

 

Parts: -  

1. Microarchitecture  

2. Single-Cycle MIPS Processor 

3. HDL Representation for the Single-Cycle MIPS Processor 

4. Single-Cycle MIPS Processor Testbench 

 

  



 

 

 

 

 

 

 

 

 

Page 2 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Part 1. Microarchitecture 

The architecture is the programmer’s view of a computer. It is defined 

by the instruction set and operand locations (registers and memory).  

Computer hardware understands only 1’s and 0’s, so instructions are 

encoded as binary numbers in a format called machine language. 

Microprocessors are digital systems that read and execute machine 

language instructions. 

A computer architecture does not define the underlying hardware 

implementation. Microarchitecture is the specific arrangement of 

registers, ALUs, finite state machines (FSMs), memories, and other 

logic building blocks needed to implement an architecture. 

You have learned about the MIPS architecture, which specifies the 

programmer’s view of the MIPS processor in terms of registers, 

instructions, and memory. In this lab, you will learn how to piece 

together a MIPS microprocessor. 

 

Part 2. Single-Cycle MIPS Processor 

We will divide our microarchitectures into two interacting parts: the 

datapath and the control. The datapath contains structures such as 

memories, registers, ALUs, and multiplexers.  

MIPS is a 32-bit architecture, so we will use a 32-bit datapath. The 

control unit receives the current instruction from the datapath and tells 

the datapath how to execute that instruction. Specifically, the control 

unit produces multiplexer select, register enable, and memory write 

signals to control the operation of the datapath. 

The single-cycle microarchitecture executes an entire instruction in 

one cycle. It is easy to explain and has a simple control unit.  

The program counter is a 32-bit register. The program counter (PC) 

register contains the address of the instruction to execute. Because 

instructions are 32 bits = 4 bytes, the next instruction is at PC + 4. 



 

 

 

 

 

 

 

 

 

Page 3 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

 
Figure 1. Complete single-cycle MIPS processor 

The instruction memory has a single read port. It takes a 32-bit 

instruction address input (A), and reads the 32-bit data from that address 

onto the read data output (RD). 

Treating the instruction memory as a ROM is an oversimplification. 

In most real processors, the instruction memory must be writable so 

that the OS can load a new program into memory. 

The 32-element × 32-bit register file has two read ports and one write 

port. The read ports take 5-bit address inputs (A1) and (A2) each 

specifying one of 25 = 32 registers as source operands. They read the 

32-bit register values onto read data outputs (RD1) and (RD2), 

respectively. The write port takes a 5-bit address input (A3), a 32-bit 

write data input (WD), a write enable input (WE3), and a clock. If the 

write enable is 1, the register file writes the data into the specified 

register on the rising edge of the clock. 

The data memory has a single read/write port. If the write enable 

(WE) is 1, it writes data (WD) into address (A) on the rising edge of the 

clock. If the write enable is 0, it reads address (A) onto (RD). 



 

 

 

 

 

 

 

 

 

Page 4 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Part 3. HDL Representation for the Single-Cycle MIPS Processor 

This section presents HDL code for the single-cycle MIPS processor 

supporting all of the instructions discussed in Lecture 10, including 

addi and j.  

The instruction and data memories are separated from the main 

processor and connected by address and data busses. This is more 

realistic, because most real processors have external memory. It also 

illustrates how the processor can communicate with the outside world. 

The processor is composed of a datapath and a controller. The 

controller is composed of the main decoder and the ALU decoder. 

Figure 2 shows a block diagram of the single-cycle MIPS processor 

interfaced to external memories. 

 
Figure 2. MIPS single-cycle processor interfaced to external memory 



 

 

 

 

 

 

 

 

 

Page 5 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Note that all HDL files are written in SystemVerilog. SystemVerilog 

acts as a superset of Verilog. 

 

Adder 

 
module adder(input logic [31:0] a, b, 

      output logic [31:0] y); 

  

 assign y = a + b; 

endmodule 

 

 

2:1 Multiplexer 

 
module mux2 #(parameter WIDTH = 8) 

   (input logic [WIDTH-1:0] d0, d1, 

    input logic s, 

    output logic [WIDTH-1:0] y); 

  

 assign y = s ? d1 : d0; 

endmodule 

 



 

 

 

 

 

 

 

 

 

Page 6 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Resettable Flip-Flop 

 
module flopr #(parameter WIDTH = 8) 

   (input logic clk, reset, 

    input logic [WIDTH-1:0] d, 

    output logic [WIDTH-1:0] q); 

 always_ff @(posedge clk, posedge reset) 

  if (reset)  

   q <= 0; 

  else  

   q <= d; 

endmodule 

 

Shift Left By 2 (Multiply By 4) 

 
module sl2(input logic [31:0] a, output logic [31:0] y); 

 assign y = {a[29:0], 2'b00}; 

endmodule 

 

Sign Extension 

 
module signext(input logic [15:0] a, output logic [31:0] y); 

 assign y = {{16{a[15]}}, a}; 

endmodule 

 



 

 

 

 

 

 

 

 

 

Page 7 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Register File 

 
module regfile(input logic clk, 

    input logic we3, 

    input logic [4:0] ra1, ra2, wa3, 

    input logic [31:0] wd3, 

    output logic [31:0] rd1, rd2); 

 logic [31:0] rf[31:0]; 

 

 always_ff @(posedge clk) 

  if (we3)  

   rf[wa3] <= wd3; 

 assign rd1 = (ra1 ! = 0) ? rf[ra1] : 0; 

 assign rd2 = (ra2 ! = 0) ? rf[ra2] : 0; 

endmodule 

 

Instruction Memory 

 
module imem(input logic [5:0] a, 

     output logic [31:0] rd); 

 logic [31:0] RAM[63:0]; 

 initial 

  $readmemh("memfile.dat", RAM); 

  assign rd = RAM[a]; // word aligned 

endmodule 



 

 

 

 

 

 

 

 

 

Page 8 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Data Memory 

 
module dmem(input logic clk, we, 

     input logic [31:0] a, wd, 

     output logic [31:0] rd); 

 logic [31:0] RAM[63:0]; 

 assign rd = RAM[a[31:2]]; // word aligned 

 always_ff @(posedge clk) 

 if (we)  

  RAM[a[31:2]] <= wd; 

endmodule 

 

 

Datapath 

 



 

 

 

 

 

 

 

 

 

Page 9 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

module datapath(input logic clk, reset, 

     input logic memtoreg, pcsrc, 

     input logic alusrc, regdst, 

     input logic regwrite, jump, 

     input logic [2:0] alucontrol, 

     output logic zero, 

     output logic [31:0] pc, 

     input logic [31:0] instr, 

     output logic [31:0] aluout, writedata, 

     input logic [31:0] readdata); 

   logic [4:0] writereg; 

   logic [31:0] pcnext, pcnextbr, pcplus4, pcbranch; 

   logic [31:0] signimm, signimmsh; 

   logic [31:0] srca, srcb; 

   logic [31:0] result; 

   // next PC logic 

   flopr #(32) pcreg(clk, reset, pcnext, pc); 

   adder pcadd1(pc, 32'b100, pcplus4); 

   sl2 immsh(signimm, signimmsh); 

   adder pcadd2(pcplus4, signimmsh, pcbranch); 

   mux2 #(32) pcbrmux(pcplus4, pcbranch, pcsrc, pcnextbr); 

   mux2 #(32) pcmux(pcnextbr, {pcplus4[31:28], 

       instr[25:0], 2'b00}, jump, pcnext); 

   // register file logic 

   regfile rf(clk, regwrite, instr[25:21], instr[20:16], 

   writereg, result, srca, writedata); 

   mux2 #(5) wrmux(instr[20:16], instr[15:11], 

       regdst, writereg); 

   mux2 #(32) resmux(aluout, readdata, memtoreg, result); 

   signext se(instr[15:0], signimm); 

   // ALU logic 

   mux2 #(32) srcbmux(writedata, signimm, alusrc, srcb); 

   alu alu(srca, srcb, alucontrol, aluout, zero); 

endmodule 

 



 

 

 

 

 

 

 

 

 

Page 10 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Main Decoder 

 
module maindec(input logic [5:0] op, 

    output logic memtoreg, memwrite, 

    output logic branch, alusrc, 

    output logic regdst, regwrite, 

    output logic jump, 

    output logic [1:0] aluop); 

  

 logic [8:0] controls; 

 assign {regwrite, regdst, alusrc, branch, memwrite, 

   memtoreg, jump, aluop} = controls; 

  

 always_comb 

 case(op) 

  6'b000000: controls <= 9'b110000010; // RTYPE 

  6'b100011: controls <= 9'b101001000; // LW 

  6'b101011: controls <= 9'b001010000; // SW 

  6'b000100: controls <= 9'b000100001; // BEQ 

  6'b001000: controls <= 9'b101000000; // ADDI 

  6'b000010: controls <= 9'b000000100; // J 

  default: controls <= 9'bxxxxxxxxx; // illegal op 

 endcase 

endmodule 

 

 

 



 

 

 

 

 

 

 

 

 

Page 11 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

ALU Decoder 

 
module aludec(input logic [5:0] funct, 

   input logic [1:0] aluop, 

   output logic [2:0] alucontrol); 

    

   always_comb 

   case(aluop) 

      2'b00: alucontrol <= 3'b010; // add (for lw/sw/addi) 

      2'b01: alucontrol <= 3'b110; // sub (for beq) 

      default:  

         case(funct) // R-type instructions 

          6'b100000: alucontrol <= 3'b010; // add 

          6'b100010: alucontrol <= 3'b110; // sub 

          6'b100100: alucontrol <= 3'b000; // and 

          6'b100101: alucontrol <= 3'b001; // or 

          6'b101010: alucontrol <= 3'b111; // slt 

          default: alucontrol <= 3'bxxx;   // ??? 

     endcase 

   endcase 

endmodule 

 



 

 

 

 

 

 

 

 

 

Page 12 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Controller 

 
module controller(input logic [5:0] op, funct, 

       input logic zero, 

       output logic memtoreg, memwrite, 

       output logic pcsrc, alusrc, 

       output logic regdst, regwrite, 

       output logic jump, 

       output logic [2:0] alucontrol); 

  

 logic [1:0] aluop; 

 logic branch; 

  

 maindec md(op, memtoreg, memwrite, branch, 

     alusrc, regdst, regwrite, jump, aluop); 

 aludec ad(funct, aluop, alucontrol); 

 assign pcsrc = branch & zero; 

endmodule 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Page 13 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Single-Cycle MIPS Processor 

 
module mips(input logic clk, reset, 

     output logic [31:0] pc, 

     input logic [31:0] instr, 

     output logic memwrite, 

     output logic [31:0] aluout, writedata, 

     input logic [31:0] readdata); 

 logic memtoreg, alusrc, regdst, 

 regwrite, jump, pcsrc, zero; 

 logic [2:0] alucontrol; 

  

 controller c(instr[31:26], instr[5:0], zero, 

       memtoreg, memwrite, pcsrc, 

       alusrc, regdst, regwrite, jump,   

       alucontrol); 

 datapath dp(clk, reset, memtoreg, pcsrc, 

      alusrc, regdst, regwrite, jump, 

      alucontrol, 

      zero, pc, instr, 

      aluout, writedata, readdata); 

endmodule 



 

 

 

 

 

 

 

 

 

Page 14 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

The instruction and data memories are separated from the main 

processor and connected by address and data busses. This is more 

realistic, because most real processors have external memory. It also 

illustrates how the processor can communicate with the outside world. 

 

MIPS Top-Level Module 

 
module top(input logic clk, reset, 

    output logic [31:0] writedata, dataadr, 

    output logic memwrite); 

   logic [31:0] pc, instr, readdata; 

 

   // instantiate processor and memories 

   mips mips(clk, reset, pc, instr, memwrite, dataadr, 

      writedata, readdata); 

   imem imem(pc[7:2], instr); 

   dmem dmem(clk, memwrite, dataadr, writedata, readdata); 

endmodule 



 

 

 

 

 

 

 

 

 

Page 15 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Part 4. Single-Cycle MIPS Processor Testbench 

The MIPS testbench loads a program into the instruction memory. The 

machine code is stored in a hexadecimal file called memfile.dat, which 

is loaded by the testbench during simulation. The file consists of the 

machine code for the instructions, one instruction per line. 

The program exercises all of the instructions by performing a 

computation that should produce the correct answer only if all of the 

instructions are functioning properly. The program will write the 

value 7 to address 84 if it runs correctly, and is unlikely to do so if 

the hardware is buggy. 

 

        Assembly      Description    Address    Machine 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Page 16 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

MIPS Top-Level Module Testbench 

module testbench(); 

  logic clk; 

  logic reset; 

  logic [31:0] writedata, dataadr; 

  logic memwrite; 

 

  // instantiate device to be tested 

  top dut(clk, reset, writedata, dataadr, memwrite); 

  // initialize test 

  initial 

    begin 

      reset <= 1; #22;  

      reset <= 0; 

       

      $display("\t\t    time \tdataadr\t\twritedata"); 

      $monitor("%d\t%d\t%d", $time, dataadr, writedata); 

    end 

  // generate clock to sequence tests 

  always 

    begin 

      clk <= 1; #5;  

      clk <= 0; #5; 

    end 

  // If successful, it should write the value 7 to address 84 

  always @(negedge clk) 

    begin 

      if(memwrite) begin 

        if(dataadr === 84 & writedata === 7) begin 

          $display("Simulation succeeded"); 

          $stop; 

        end  

      end 

    end 

endmodule 

 



 

 

 

 

 

 

 

 

 

Page 17 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

As mentioned, the machine code is stored in a hexadecimal file called 

memfile.dat, which consists of the machine code for the 

instructions, one instruction per line. 

memfile.dat 

20020005 

2003000c 

2067fff7 

00e22025 

00642824 

00a42820 

10a7000a 

0064202a 

10800001 

20050000 

00e2202a 

00853820 

00e23822 

ac670044 

8c020050 

08000011 

20020001 

ac020054 

 

The following do file is used to run the testbench of the MIPS 

processor. To run the do file use the command do mips.do 

mips.do 

vsim testbench 

add wave -position insertpoint sim:/testbench/* 

run 200 



 

 

 

 

 

 

 

 

 

Page 18 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

The single-cycle MIPS processor executes instruction by instruction. 

Each entire instruction is executed in one cycle. The last instruction 

should write the value 7 to address 84 as shown in Figure 3, so the 

simulation has succeeded, and the HDL code is functioning properly.  

MIPS Testbench Output 

# time   dataadr  writedata 

# 22          5          5 

# 30         12          x 

# 40          3          x 

# 50          7          5 

# 60          4          7 

# 70         11          7 

# 80          8          3 

# 90          0          7 

# 100      0          0 

# 110      1          5 

# 120     12         11 

# 130      7          5 

# 140     80          7 

# 150     80          5 

# 160      0          0 

# 170     84          7 

# Simulation succeeded 

 

 
Figure 3. Waveforms of the testbench 



 

 

 

 

 

 

 

 

 

Page 19 of 19 

 

Faculty of Computers and Artificial Intelligence 

CS222: Computer Architecture  

Final Project Hint 

1. Write the C Code for the Complete bank System.  

2. Only Translate the C function of Wtime into MIPS assembly language. 

3. Convert the Wtime assembly instructions, from (2) into machine code. 

4. Create Wtime.dat and upload the machine code of the Wtime into MIPS memory.  

5. Verify your code by simulating the MIPS processor in ModelSim.  

6. Identify two testcases and show that your code for Wtime is working correctly.  

 

 


